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Avalanche-like behaviour of a model liquid: how a dense
liquid flows
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Abstract. Samplings of potential energy minima of a two-dimensional model of a binary random
alloy (A64B36) are performed in two distinct ways. The first method uses successive local changes
(nearest-neighbour AB switches) to produce a series of energy minima. The second method uses
successive global changes (shear strain) to produce a series of minima. This material is amorphous
and it is argued that each of the two methods samples a region of configuration space large enough
to allow the material to flow. That is, each procedure samples states of a model liquid. For each
of these two sampling methods the statistics of the changes in atomic configuration are similar to
the avalanche statistics of models of self-organized critical phenomena. This leads naturally to a
simple picture of how a dense liquid may flow.

The dynamics of liquids [1] is complicated by the existence of two distinct time scales. Over
short times the motion of the atoms in liquids is comparable to that of atoms in crystalline
solids. The atoms rattle around in ‘cages’ created by their neighbours but do not move from
one neighbourhood to another. This caged motion apparently includes most of the degrees of
freedom of the liquid so that it leads to the well known result that molar specific heats of simple
liquids are comparable to the Dulong–Petit specific heats of simple solids. On the other hand,
the atomic motion in liquids over long time scales is quite complex, as atoms move from one
neighbourhood to another. These changes in the topology of the atoms in a liquid are arguably
the distinguishing characteristic of a liquid, since they lead to the macroscopic feature which
distinguishes liquids from solids, the ability to flow.

Most of the progress in the theory of liquids, both analytically [2] and with simulations
[3, 4], has come from studies which include both of these time scales at once. In particular, the
simulations may allow one to understand the detailed atomic motion which takes place during
a change from one topologically distinct atomic configuration to another. For instance, recent
molecular dynamics (MD) simulations [4] have shown that, for liquids at low temperatures,
changes in atomic configuration are accompanied by one dimensional (string-like) regions of
mobile atoms with correlated motion. Computer simulations are well characterized methods
for sampling the atomic configuration space but are perhaps most important for the fact that
they yield predictions for thermodynamic quantities. In this Letter, I want to discuss two
other samplings of the space of atomic configurations of a liquid and, in the process, relate the
configuration changes to the so-called self-organized critical (SOC) systems [5]. In particular,
in this Letter I report the statistics of the sizes of the atomic rearrangements and show that they
follow a power law.

A two-dimensional model is chosen for computational and viewing ease and because
liquids seem to be as common in two-dimensional matter as in three dimensions. The particular
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model studied here is a two-component random alloy similar to models previously used to
study glasses [6]. For the purposes of this Letter I will distinguish liquids from glasses using
Kauzmann’s [7] point that a real glass is simply a liquid which is limited, because of its low
temperature, in the range of atomic configurations it may sample during the time scale of an
experiment. This makes a glass unable to flow, and so it is solid. In this study the material
apparently samples a large enough set of atomic configurations to allow it to flow, so I consider
the sampling to be of the configuration space of a liquid.

The model [8] used is a two-dimensional random alloy of large A atoms and small B atoms
with atomic size ratio= (radius of B)/(radius of A) = 0.75. Theith atom is bound to thej th
atom by the Lennard-Jones pair potential

Eij = 4(ε)((σij /rij )
12− (σij /rij )6)

whererij is the distance between the atoms,σij = σAA = 1 if both i andj are A atoms,
similarly σBB = 0.75 andσAB = σBA = (σAA + σBB)/2. All energies are given in units ofε
and distances in units ofσAA. To speed up calculations the pair potential is cut off atrij = 3.5.
The system consists of either 1024 atoms or 4096 atoms† with A and B atoms originally placed
randomly on a hexagonal lattice. The concentration of B atoms isc. To minimize the effects
of sample size, periodic boundary conditions are used. The simulation cell is chosen to be
initially rectangular (shear angle= θ = 0) with R = (cell height/cell width) = sin(π/3).
The energy of the system,E = ∑

i

∑
j>i Eij , is then minimized (with respect to all atomic

position and cell size and shape parameters‡) to one part in 107 using standard techniques
[9]. The energy minimization allows the atoms to adjust their positions away from their initial
lattice points. For small concentrations of B atoms (c less than 20–25%) the resulting material
has the same type of long-range bond-orientational order and quasi-long-range translational
order (power-law decay in real space) [10] as a single component two-dimensional crystal at
low T [11]. However, forc greater than about 25–30% the atoms move around sufficiently
in the initial relaxation so that no long-range translational or bond-orientational order is left
[8, 10]. That is, these materials are amorphous. In this Letter I will focus onc = 36%,
which is well into the amorphous regime and is the concentration I have studied the most.
However, I have examined the configuration states of a series of samples with compositions
3%6 c 6 42% and have found that all of the amorphous samples behave in the same fashion
asc = 36%. The crystalline samples will be the subject of another paper [12].

The point of this study is to examine the statistics of changes in atomic configuration
which occur when the material moves from one local potential energy minimum to a nearby
minimum. I have chosen two distinct methods to produce these successive energy minima.
For the first method the material is driven from one local energy minimum to another by
(i) randomly choosing a nearest-neighbour AB pair of atoms and turning the A atom into a B
and the B atom into an A, and (ii) minimizingE again with respect to all of the atomic position
and cell shape parameters. I change the radii of the atoms rather than switching them so that
all atomic motion takes place in the relaxation processand no atoms are moved arbitrarily.
Throughout the rest of this Letter, reference to AB switches will imply the subsequent energy
minimization. In the second method the configuration space is sampled by (i) shearing the
material by changing the ratio,R, of the height of the cell to the width, and (ii) minimizing
the energy with respect to all atomic position and cell shape parameters exceptR. Again,

† There do not seem to be qualitative differences in the two different size samples so I will generally use the largest
lattice which allows sampling of a large enough set of configuration states in a reasonable time.
‡ Minimizing the energy with respect to simulation cell size and shape parameters implies that one is working at zero
pressure and zero stress. I have checked that the resulting statistics are the same if one instead leaves the simulation
cell shape parameters fixed.
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throughout the rest of this Letter, unless otherwise noted, any discussion of steps inR will
imply the subsequent energy minimization. This second method is essentially changing the
shape of the container holding the sample. These two methods have obvious analogues in
the sandpile models. In sandpile models [5] (as opposed to actual sandpiles) one considers
a lattice of sandpile ‘heights’ where the pile at a lattice point ‘topples’ when it is larger than
some fixed value. One can drive the system into a critical state either by increasing the pile
heights at random lattice positions (analogous to the local AB switches) or by increasing the
pile height at every lattice position simultaneously (analogous to the macroscopic strain) [13].
For sandpile models both methods lead to power-law distributions of avalanche sizes.

First I will discuss results from the local method on simulation samples with 1024 atoms.
First, 100 AB switches are performed to verify that the system is in a stable state† with respect
to these switches. Then 2000 switches are carried out while monitoringE, θ , R and the cell
volume. It is found that all of these macroscopic quantities fluctuate around well defined
averages. For instance, the energy per atom forc = 36% is−3.113± 0.005. In analogy
with sandpile models [4, 13], one can define an avalanche by counting the number of atoms,n,
which move more than a given cut-off distance. One needs to define an avalanche in terms of
a cut-off distance because all of the atoms move a finite amount in each rearrangement. If the
system is in a critical state then there is no natural length scale in the problem and the shape of
the resulting distribution,P(n), follows a power lawP(n) ∝ (n)−ν whereν is of order one.
In figure 1 one sees that such a power-law tail is consistent with the avalanche results.

Figure 1. Power-law distribution of avalanche sizes for amorphous A64B36 under AB switches.
The line is a power-law fit to the data for avalanche sizes between 6 atoms and 200 atoms. Included
are data for 4500 steps (three separate runs of 2000, 2000, and 500 steps).

The energy states sampled by straining the material can be analysed in a similar fashion in
terms of avalanches. However, sinceR must be changed in finite steps, one must first decide

† There are very small bond-orientational correlations (calculated as described in [8]) forc = 36% which decay away
in the first 50 switches.
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what size steps inR to take. One of the sampled states from the AB switches is chosen to be the
starting state. Then the ratio of cell height to cell width,R, is changed from about 0.86 to about
0.93 in six different ways; (i) 7 steps of1R = 0.01, (ii) 21 steps of 0.003, (iii) 70 steps of 0.001,
(iv) 210 steps of 0.0003, (v) 700 steps of 0.0001, and (vi) 2100 steps of 0.000 03. The resulting
energies are shown in figure 2. For the largest steps the energy increases quadratically (as an
elastic material) up to a strain,1R/R of about 0.05, after which the response is clearly plastic.
As the step size ofR is decreased (smaller strain rate) the response at low strain becomes less
and less elastic-like as sharp drops in energy are seen superimposed on the mainly quadratic
background. The states sampled at the three smallest strain rates show no quadratic region,
but the energy versus strain curves are similar, leading one to the idea that these strain rates
will yield approximately the same avalanche distributions.

Figure 2. Energy of the amorphous alloy as a function ofR, the ratio of height to width of the
simulation cell. The ratio,R, was changed from smallR to largerR in steps of 0.01, 0.003, 0.001,
0.0003, 0.0001, and 0.000 03 as shown in the figure.

In order to sample a large enough set of states to get an idea of the statistics of the
avalanches, 2800 steps of1R = 0.0001 are taken for each of three distinct model materials
with 1024 atoms, and one set of 2800 steps is taken for a sample with 4096 atoms. The
avalanche size is, again, the number of atoms which move more than a given cut-off distance.
However, as for the AB switches I only consider the distance an atom moves in the relaxation
process. The shift of atoms which is put in by hand (shearing of the simulation cell) is not
considered in measuring the avalanche size. The resulting size distribution is shown in figure 3.
Again, the resulting distribution follows a power law.

Before proceeding with a discussion of these results I will address the question of how
this sampling of states is related to the configuration states of a liquid. A liquid at a finite
temperature certainly cannot sample all of configuration space in a finite time. However, as
discussed above, a liquid is able to sample states over a large enough volume of configuration
space,�sample, that it can flow (change its shape). One might suppose that there is a roughly
defined minimum configuration space volume,�liquid , such that for�sample > �liquid the
material behaves as a liquid and for�sample < �liquid the material behaves as a glass. Do the
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Figure 3. Power-law distribution of avalanche sizes for amorphous A64B36 under steps inR (the
height to width ratio of the simulation cell) of1R = 0.0001 per step. The line is a power-law fit
to the data for avalanche sizes between 1 atom and 200 atoms.

two methods that I have used sample states over a volume of configuration space,�sample, such
that�sample > �liquid? For the strain method of sampling states I am, in fact, changing the
shape of the container so the sample does flow, and�sample must be larger than�liquid . There
are three reasons why I think that the same holds true for the AB switch sampling method.
First, the atomic diffusion is just as large with this method as with the strain method. By that I
mean that when I calculate the mean square atomic deviation,〈δr2〉 (which equals the square
of the distance an atom has moved from its initial position, averaged over all atoms), I find that
〈δr2〉 ∼ 1.8 after 2000 AB switches but〈δr2〉 ∼ 0.5 after the 2800 steps of1R = 0.0001.
Large diffusion implies small viscosity. Second, the range of state energies spanned by this
method is at least as large as for the strain method. Finally, if a sample is rapidly strained to a
high energy and then AB switches are made with the sample shape held constant, the energy
of the sample relaxes back to the unstrained energy. That is, the switches allow the sample
to flow. So it seems that�sample > �liquid for both sampling methods and both of them are
sampling states of a liquid.

The results of this sampling of liquid configuration states suggest that, at the atomic
level, the flow of liquids is an intermittent process. At low temperatures liquids behave as
SOC systems with highly correlated, essentially irreversible, atomic movements (avalanches)
triggered by thermal fluctuations. The backbones of the largest avalanches, consisting of the
atoms which move the most, are one-dimensional in nature [10]. This leads to the possible
identification of these avalanche backbones with the correlated strings of atoms seen in MD
simulations. At very high temperatures, the thermally triggered avalanches overlap each other
sufficiently that the atomic motion is essentially uncorrelated Brownian motion as in a gas.

Finally, I should add the caveat that the potential energies used in this model do not include
the angular constraints of covalent bonding, so it is not an appropriate phenomenological model
for covalently-bonded materials even if they also turn out to be SOC systems.
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I would like to thank W L Johnson and M Li for introducing me to the subject of alloy glasses
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